FPGA architecture and implementation of sparse matrix-vector multiplication for the finite element method

نویسندگان

  • Yousef El-Kurdi
  • David Fernández
  • Evgueni Souleimanov
  • Dennis Giannacopoulos
  • Warren J. Gross
چکیده

The Finite Element Method (FEM) is a computationally intensive scientific and engineering analysis tool that has diverse applications ranging from structural engineering to electromagnetic simulation. The trends in floating-point performance are moving in favor of Field-Programmable Gate Arrays (FPGAs), hence increasing interest has grown in the scientific community to exploit this technology. We present an architecture and implementation of an FPGA-based sparse matrix–vector multiplier (SMVM) for use in the iterative solution of large, sparse systems of equations arising from FEM applications. FEM matrices display specific sparsity patterns that can be exploited to improve the efficiency of hardware designs. Our architecture exploits FEM matrix sparsity structure to achieve a balance between performance and hardware resource requirements by relying on external SDRAM for data storage while utilizing the FPGAs computational resources in a stream-through systolic approach. The architecture is based on a pipelined linear array of processing elements (PEs) coupled with a hardware-oriented matrix striping algorithm and a partitioning scheme which enables it to process arbitrarily big matrices without changing the number of PEs in the architecture. Therefore, this architecture is only limited by the amount of external RAM available to the FPGA. The implemented SMVM-pipeline prototype contains 8 PEs and is clocked at 110 MHz obtaining a peak performance of 1.76 GFLOPS. For 8 GB/s of memory bandwidth typical of recent FPGA systems, this architecture can achieve 1.5 GFLOPS sustained performance. Using multiple instances of the pipeline, linear scaling of the peak and sustained performance can be achieved. Our stream-through architecture provides the added advantage of enabling an iterative implementation of the SMVM computation required by iterative solution techniques such as the conjugate gradient method, avoiding initialization time due to data loading and setup inside the FPGA internal memory. © 2007 Elsevier B.V. All rights reserved. PACS: 07.05.Bx; 47.11.Fg

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Sparse Matrix Vector Multiplication GPU Algorithm Designed for Finite Element Problems

Recently, graphics processors (GPUs) have been increasingly leveraged in a variety of scientific computing applications. However, architectural differences between CPUs and GPUs necessitate the development of algorithms that take advantage of GPU hardware. As sparse matrix vector multiplication (SPMV) operations are commonly used in finite element analysis, a new SPMV algorithm and several vari...

متن کامل

Efficient Multicore Sparse Matrix-Vector Multiplication for Finite Element Electromagnetics on the Cell-BE processor

Multicore systems are rapidly becoming a dominant industry trend for accelerating electromagnetics computations, driving researchers to address parallel programming paradigms early in application development. We present a new sparse representation and a two level partitioning scheme for efficient sparse matrix-vector multiplication on multicore systems, and show results for a set of finite elem...

متن کامل

Towards a fast parallel sparse matrix-vector multiplication

The sparse matrix-vector product is an important computational kernel that runs ineffectively on many computers with super-scalar RISC processors. In this paper we analyse the performance of the sparse matrix-vector product with symmetric matrices originating from the FEM and describe techniques that lead to a fast implementation. It is shown how these optimisations can be incorporated into an ...

متن کامل

On Sparse Matrix-Vector Multiplication with FPGA-Based System

In this paper we report on our experimentation with the use of FPGA-based system to solve the irregular computation problem of evaluating when the matrix A is sparse. The main features of our matrix-vector multiplication algorithm are (i) an organization of the operations to suit the FPGA-based system ability in processing a stream of data, and (ii) the use of distributed arithmetic technique t...

متن کامل

Run-Time Optimization of Sparse Matrix-Vector Multiplication on SIMD Machines

Sparse matrix-vector multiplication forms the heart of iterative linear solvers used widely in scientific computations (e.g., finite element methods). In such solvers, the matrix-vector product is computed repeatedly, often thousands of times, with updated values of the vector until convergence is achieved. In an SIMD architecture, each processor has to fetch the updated off-processor vector el...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Physics Communications

دوره 178  شماره 

صفحات  -

تاریخ انتشار 2008